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Abstract

A signal processing algorithm has been developed in which a filter
function is extracted from degraded data through mathematical operations.
The filter function can be used to restore much of the degraded content of
the data through use of a deconvolution process. The operation can be
performed without prior knowledge of the detection system, a technique
known as blind deconvolution. The extraction process, designated Self-
deconvolving Data Reconstruction Algorithm (SeDDaRA), is applied here
to audio-frequency signals showing significant qualitative improvement.
Degradation arising from the process of electronic recording and repro-
duction is significantly reduced.

PACS numbers: 43.60.Ac, 43.60.Dh
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1 INTRODUCTION

The self-deconvolving data restoration algorithm, or SeDDaRA, [1, 2, 3] en-
ables efficient restoration and enhancement of degraded data by identification
of an impulse function. The effect of the impulse function can be removed
from the data using a deconvolution process. In this study, the process is ap-
plied to empirical audio-frequency signals that were degraded by electronic
reproduction. This action imposes an undetermined frequency response upon
the signals. The algorithm compares this frequency response to that of a non-
degraded, or ‘reference’ signal and derives a filter function. The filter function
can then be used to restore the signal, and others produced by the same system,
using a deconvolution process.

Signal processing [4, 5] using blind deconvolution is an active field of study
for a broad spectrum of applications. [6, 7, 8, 9, 11, 10] Blind deconvolution is
required in situations where the impulse function cannot be accurately mea-
sured or modeled. Blind deconvolution techniques can be classified as iterative
or non-iterative. For real-time applications, non-iterative techniques are more
desirable, but often have limited applicability. Iterative techniques can be more
effective, but are more computationally intensive. [1]

The SeDDaRA process is a non-iterative technique, and has proven to be
quite robust in a broad spectrum of applications. Application requires little
user input and is computer efficient, in contrast to iterative techniques. The
process compares the magnitude of the data in Fourier space to the same qual-
ity of a specified reference data set. A filter function is derived from the com-
parison and used as a transfer function for restoring the original data.

In this study, the technique is applied to acoustic signals as verification that
the technique can be applied to audio-frequency signals. An acoustic signal is
produced by a conventional computer speaker, and simultaneously recorded
by the computer microphone. This action imposes an unknown frequency
response upon the signal. With SeDDaRA, much of the degraded frequency
response can be restored. This is demonstrated by the significant qualitative
improvement in both the signals and their frequency distributions.

2 THEORY

This section summarizes the theoretical development of the blind deconvolu-
tion process. A more complete description can be found in the references.[1]

2.1 Deconvolution

The goal of data restoration is to remove degradation from a signal that, with
an ideal detection system, would not be present. Once the form of the degra-
dation is known, a class of deconvolution processes, [12, 13, 14, 15] such as
non-negative least squares and the Wiener filter, can be used to remove the de-
fect as best as possible. A mathematical representation of the degraded data
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g(t) is
g(t) = f(t) *d(t) +w(t) 1

where d(t) is the impulse function, f(t) is the truth or non-degraded data, w(¢)
is a noise term, and ‘+” denotes the convolution. The objective is to find the best
estimate of f(t) from g(¢) when d(t) and w(t) are unknown. This relationship
is simplified by transferring Eq. (1) into frequency space via application of a
Fourier transform, yielding

Gv)=F(v) D(v)+W(v) (2)

where v is the coordinate in frequency space, and transformed functions are
represented by capital letters.

For known d(t), a deconvolution process can be applied to ¢(¢) to approx-
imate f(t). A pseudo-inverse filter, an approximation of the Wiener filter, is
employed here. The deconvolution is produced from

G(v) D*(v)

PO~ BeET 6

®)
where the parameter C; prevents amplification of noise and can be chosen by
trial and error.

2.2 Blind Deconvolution

For unknown d(t), the transfer function D(v) is derived from G(v) for use in
a deconvolution algorithm. To this end, the degradation is assumed invariant,
D(v) is assumed real and has the form

D(u) = [KaS{|G(v) — W()[}]**) @

where «(v) is a tuning parameter and K is a real, positive scalar chosen to
ensure
(D)l < 1. ®)

Application of the smoothing filter, usually a median filter, S{...} assumes that
D(v) is a slowly varying function.

Equation (5) demonstrates the difference between the application of SeD-
DaRA on sounds and images. For images, it is usually sufficient to assume
that the degradation only occurs as a result of reduction of specific frequencies.
Thus, the criteria for images states that 0 < |D(v)| < 1. In acoustic settings, the
possibility of amplification cannot be ruled out.

Equation (4) is subject to the conditions that the smoothing filter S{...} is
separable, and F'(v) and W (v) are uncorrelated. Equation (4) states that ap-
plication of a smoothing filter and power law to the power spectrum of the
reference data, when chosen correctly, will produce the impulse function. Al-
though stated as an equality, in practice this is an approximation stemming
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from separability condition. For simplicity, the noise term W (v) will be as-
sumed negligible.
Since D(v) is assumed real, Eq. (2) can be restated as

S{IG(v)[}
D)= c=—+~ (6)

= SFD
where the smoothing operator has been applied. Since D(v) is a slowly varying

function, it can be removed from the influence of the smoothing operator.

Equation (6) is substituted into Eq. (4),
S{GWI . KeS{IGW)I}
S{IFWI}  KpS{|F'(v)[}

~ [KeS{|Gw) [} @)

Since the truth data F'(v) is unknown, we have replaced it with a data set F’(v)
that contains the desired characteristic frequency spectrum, where K/ is an-
other scaling parameter. With the smoothing filter, the replacement data set
needs to satisfy

KpS{|F' (W)} = KrS{[F(v)]}. ®)

Preferably, this function would be a theoretical model of the anticipated result.
However, since modeling a detection system is often complicated, using a fair
representation of the truth data can be more efficient.

The function |[F’(v)| is the key to the success of the process. It is a repre-
sentation of the frequencies that one expects to achieve. With the presence of
the smoothing filter, this function need only be similar to the spectrum of the
actual truth |F'(v)|. For example, a good quality recording a man’s voice may
be used to restore a degraded recording of another man’s voice. In practice,
finding a suitable |F”(v)] is not a difficult task.

Solving for a(v) produces

KaS|G(w)|] — In[Kp S{|F'(v)|}]
Ln[KaS|G(v)]]

o) ~ 2L . )

In this relation, K¢ and Kp: must be determined such that |D(v)| < 1. This
condition is satisfied if we set K¢ = 1/Max[S{|G(v)|}] and Kp» = 1/Max[S{|F" (v)|}].
It follows that
D(v) = {KeS{|Gw)}}*") (10)

where «a(v) is given by Eq. (9).

Substitution of Eq. (9) into Eq. (10) produces an approximation of Eq. (6),
providing a more concise result.

SeDDaRA is applicable when the degradation is invariant, as it estimates
the impulse function from the entirety of the data. In cases where the degrada-
tion is not uniform across the data set, some restoration is still possible. How-
ever, this may produce non-physical artifacts. The algorithm has also been
applied successfully to signals that contain significant noise. A formal study
on the influence of noise has not yet been conducted.
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3 EMPIRICAL APPLICATION

3.1 Deconvolution with known non-degraded signal

The application of SeDDaRA to sound was first verified by restoring a de-
graded sound wave using the non-degraded sound wave for the reference
data. The synthetic sound wave, sweeping the frequency range from 100 to
2000 Hz for a period of three seconds, is displayed in Fig. 1 (top). The wave is
sinusoidal in shape, but due to space constrictions, the waveform appears as
a block in the graph. This sound wave was played out to the computer’s au-
dio speakers and simultaneously recorded on the computer microphone, Fig. 1
(center), located several inches away. A degraded and unknown frequency
response is forced onto the sound wave by both the audio speakers and mi-
crophone. The recorded sound wave was processed with SeDDaRA using the
synthetic waveform as the reference wave.

The synthetic, recorded, and processed waveforms are shown in Fig. 1. The
recorded waveform has a considerable low-frequency component that could be
attributed to air currents near the microphone. The processed waveform shows
obvious amplification of noise, but removes the low-frequency components
and restores the amplitude levels to approximately the original values.

The frequency distributions are displayed in Fig. 2. The low-frequency
component dominates the sound wave as evident in the frequency spectrum
of the recorded sound wave, Fig. 2 (center). The restoration, however, closely
resembles the original spectrum. The highest frequencies (greater than 19 kHz)
appear diminished. Some loss may have resulted from the signal being clipped
at high amplitudes during the sampling process.

3.2 Deconvolution with derived impulse function

The utility of the previous experiment is that it provides a function that allows
for the restoration of any sound wave that traverses the same path as the sound
wave tested above. In a broader sense, a correction function can be measured
for any system where a signal with a known frequency function can be gener-
ated.

Another sound wave, a segment of a digital recording of a bassoon quar-
tet, [16] was played through the system. The recorded wave was restored using
the a(v) from section 3.1. The function D(v) was calculated by following the
procedure of section 3.1.

The results of the experiment are shown in Fig. 3. The sound wave is clearly
degraded by the playback and recording operation. As shown, application of
the pseudo-inverse filter with a derived D(v) restores the sound wave. The
frequency distributions are shown in Fig. 4.
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Figure 1: Top: A synthetic waveform was generated that sweeps the fre-
quency range from 100 to 2000 Hz in three seconds with an equal amplitude of
A = 0.66. The shape of the waves are sinusoidal, but owing to image resolu-
tion, cannot be viewed here. Center: The sound wave after it has been played
through the computer audio speaker and recorded on the computer micro-
phone. A significant amount of distortion can be seen. Bottom: The waveform
after processing with SeDDaRA. Although noise has been amplified, the low-
frequency component has been removed and the amplitude for most frequen-
cies has been regained.
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Figure 2: Top: Frequency of the synthetic waveform sweeping the frequency
range from 100 to 2000 Hz. Center: The frequency spectrum of the sound wave
after it has been played through the computer audio speaker and recorded on
the computer microphone. Bottom: The frequency spectrum of the waveform
after processing with the SeDDaRA technique. Although some signal loss is
apparent, the spectrum closely matches that of the original signal.
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Figure 3: Top: The original segment of the sound clip. Center: The sound wave
after it has been played through the computer audio speaker and recorded
on the computer microphone. A significant amount of distortion can be seen.
Bottom: The waveform after processing with the SeDDaRA technique.
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Figure 4: Top: Frequency spectrum of the music segment. Center: The fre-
quency spectrum of the sound wave after it has been played through the com-
puter audio speaker and recorded on the computer microphone. Bottom: The
frequency spectrum of the waveform after it was processed using the SeD-
DaRA technique.
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Figure 5: Top: Sound clip from a speech by John F. Kennedy Bottom: Restora-
tion of the Clip using SeDDaRA.

3.3 Deconvolution with unknown impulse function

The method was then applied to an audio recording with undefined frequency
degradation. A potential application of this technique is to restore audio in-
formation that was not recorded under optimum settings. To test this appli-
cation and blind deconvolution in general, SeDDaRA was applied to a sound
clip from a speech by President John F. Kennedy. [17] The reference data was a
voice of a man recorded recently with significantly better sound quality. Ide-
ally, one would restore a degraded recording of a certain person’s voice but
using a good quality recording of that person’s voice as the reference data,
if available. This would best preserve the frequency qualities of the person’s
voice.

The original and restored recordings are shown in Fig. 5. The frequency dis-
tributions of the reference data, the original recording, and the restored version
are shown in Fig. 6.
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From Fig. 6, the reference data (top) has an increased response in the 0 to 500 Hz
range and decreased response for frequencies above 800 Hz. After processing,
the 200 to 500 Hz region has been comparatively amplified while frequencies
above 800 Hz have been attenuated. These qualities are evident in the restored
waveform Fig. 5 (bottom) producing a perceptively better reproduction of the
voice. However, the reference waveform does have diminished response near
600 Hz, which may suggest the reference sound wave was not as good as ap-
proximation as needed.

As with any blind deconvolution method, some model of the transfer func-
tion or non-degraded signal must be estimated to perform the operation. For
SeDDaRA, the reference signal shapes the frequency response of the restored
waveform. Thus, the more attention given to the choice of reference signal, the
better the restoration will be.

4 CONCLUSION

Ablind deconvolution process has been presented that compares the frequency
response of a degraded audio-frequency signal to a good-quality signal with
the desired frequency response. A transfer function is derived from the two
signals and used to restore the degraded signal. The qualitative experiments
presented here verify that the algorithm can be applied to acoustic waveforms
to restore the frequency characteristics of the signal. The success of the restora-
tion is dependent on the choice of an appropriate reference signal.

The SeDDaRA process has several unique characteristics that are not found
in current signal processing algorithms. At the core of the process, this method
extracts a reasonably good approximation for the degradation of a signal in
a comparatively short amount of time, provided the degradation is invariant
across the data set. This algorithm is easy to implement, and can be inserted
into existing signal processing packages without much difficulty. As demon-
strated, the method works well on a wide variety of signal types, including
images, and acoustic waveforms. This is accomplished without direct infor-
mation about the type or extent of aberration.

Potential commercial applications include research-quality signal process-
ing, restoration of degraded or non-optimum audio signals, and potentially
real-time processing of digital signals, such as those in cell phones. SeDDaRA
may also find application in recording studios and home sound systems to
counteract effects created by room acoustics, and enhance the quality of the
reproduction.
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