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Abstract

This paper presents the application of the SeDDaRA blind deconvo-
lution method to image sequences produced by confocal microscopy. In
contrast to more common methods, such as Lucy-Richardson and maxi-
mum entropy, SeDDaRA is non-iterative. As such, this approach requires
significantly less computation while still producing significant blur reduc-
tion. Based on scene-statistics, successful application of this method re-
sults from finding a suitable representation of the scene, as opposed to
deriving a reasonable model of the point spread function. The method
is described and applied to two distinct confocal image stacks that are
available from the National Institute of Health web site. A resolution-
based image metric, derived from the full-width half-maximum values of
image features, is applied to assess image improvement. Based on visual
inspection and the image metric, the processed image sets show significant
improvements in image resolution and contrast.

1 Introduction

Confocal microscopy has developed into a standard research tool for studying
cell biology. Using a combination of pinholes and mirrors, confocal microscopy
limits single image capture to the focal plane of the microscope, eliminating
out-of-focus light. In operation, an image is captured for each optical depth
containing only the elements that are in focus, producing an ‘image stack.’
The image stack can be presented as a three-dimensional representation of the
sample, or as a high-resolution two-dimensional image produced by averaging
the image stack. However, confocal microscopes still can possess chromatic
and spherical optical aberrations, creating blur and reducing resolution in the
captured images.
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To remove the blur in post-processing, researchers have applied iterative
blind deconvolution methods such as Richardson-Lucy, [1, 2] maximum likeli-
hood, [3], a customized minimization algorithm. [1], and the Gold-Meinel tech-
nique. [5] In this study, we applied the SeDDaRA method to confocal image
stacks and report the improvement using image resolution as the metric. SeD-
DaRA is an effective non-iterative deconvolution process that has been applied
to solar imaging, [6] turbulence-degraded images, [7] SEM imaging, [3] and reti-
nal scanning. [9] Since the method is non-iterative, it saves on processing time
while effectively de-blurring the image. The objective of this paper is to apply
the SeDDaRA method to image stacks created by confocal microscopy and mea-
sure improvement using the full-width half-maximum values of image features.

2 SeDDaRA Deconvolution

The Self-Deconvolving Data Reconstruction Algorithm (SeDDaRA), [10] is based
on the premise that there is enough knowledge of the scene statistics that a
suitable model of the scene can be found. Thus, a reference image with similar
spatial frequency content, but no blur, is used as a model to extract the blur
from the target image.

The mathematical representation of the blurred image g(z,y) is

g(:v,y):f(x,y)ocl(x,y)—i—w(:v,y) (1)

where f(x,y) is the real scene, d(z,y) is the point spread function (PSF), w(z, y)
is a noise term, and ‘o’ indicates convolution. The objective of blind deconvolu-
tion is to find the best estimate of f(x,y) from g(x,y) when d(z,y) and w(z,y)
are unknown. Application of a fast Fourier transform (FFT) produces

G(u,v) = F(u,v) D(u,v) + W(u,v) (2)

where (u,v) are the coordinates in frequency space, and the transformed func-
tions are represented by capital letters.

If d(z,y) is known, a deconvolution process can be applied to g(x,y) to
estimate f(x,y). Many suitable deconvolution algorithms, such as non-negative
least squares and the Wiener filter, can be found in the literature. [11, 12, 13, 14]
For this effort, a pseudo-inverse filter, an approximation of the Wiener filter, has
been used. It is a fast process and very robust, and has been shown as effective
as iterative deconvolution approaches. [15, 16] The deconvolution is given by

Flu,v) ~ G(u,v) D*(u,v)

- |D(u,v)[? + Co (3)

where the parameter Cs is typically chosen as 0.01 multiplied by the average of
|D(u,v)|. The constant acts as a tuning parameter to guard against amplifica-
tion of the image noise.

Without explicit knowledge of d(z, y), the function must be estimated through
blind deconvolution. Research on blind deconvolution extends back several
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decades, but studies by Ayers and Dainty [17] spurred an increase in activity
in the astronomical community [18]. All methods require some prior knowledge
of either the scene, [19] the scene statistics, [3, 20] or the shape of the blur
function. [21] Many of these techniques are iterative and can only be applied
within certain restraints. In contrast, the SeDDaRA approach can be applied
to a large range of scene types. [10]

The SeDDaRA process assumes the PSF is space-invariant and has the form

D(u,v) = [KaS{|G(u,v) — W (u,v)|}]*" (4)

where a(u,v) is a tuning parameter and K¢ is a real, positive scalar chosen to
ensure |D(u,v)| < 1. Application of the smoothing filter S{...} assumes that
D(u,v) is a slowly varying function. Assumptions for this calculation are ex-
plained in reference [10].

After some derivation, a(u,v) is found to be

_ Ln[KgS|G(u,v) = W(u,v)|] = Ln[Kp S{|F"(u,v)|}]

o(u,v) L[ KaS|Glu,v) — W (w, v)] o

where F'(u,v) is a reference image that satisfies
KpS{|F'(u,0)[} = KpS{|F(u,v)|}- (6)

The presence of a smoothing filter greatly relaxes this condition. In Equation 5,
K¢ and Kpr must be determined such that |D(u,v)| < 1. This condition is
satisfied if we set K¢ = 1/Max[S{|G(u,v)|}| and Kp: = 1/Max[S{|F’(u,v)|}].

However, as first reported in Reference [22], SeDDaRA can be approximated
by expressing a(u, v) as a constant of frequency .. The value a depends on scene
statistics, but often o = 0.5 is an appropriate choice. The constant-frequency
approximation is often as effective as Equation 5, particularly when the PSF
has rotational symmetry.

Once D(u,v) has been extracted from the averaged image, both functions
are inserted into Equation 3 to remove the blur. Application of an inverse FFT
produces the restored image.

3  Description of Image Metrics

With blind deconvolution, absolute measurements of image improvement can
only be made if a non-blurred image stack exists. In practical situations, and
for the cases studied here, the truth images cannot be obtained. Thus, stan-
dard image processing metrics such as Mean-Square-Error and Signal-to-Noise
measures [23] cannot be applied.

Instead, the effectiveness of the algorithm is based on the improvement in
image resolution as measured by the full-width half maximum (FWHM) of image
features. [24, 25]. In this approach, profile plots are extracted across sixteen
small peaks in the original and processed images. The average of the FWHM



uarktet Tech Note 4
Q

from each peak is calculated. The amount of improvement can then be expressed
either in pixels []

I = FWHMafter - FWHMbefore (7)

or as a ratio,

FWHMbefore - FWHMafter (8)
FWHMbefore '

Iratio =

producing a reasonable assessment of the improvement in resolution. The dis-
advantage of this method is that it is scene-dependent and cannot be considered
an absolute metric.

The metric was tested by processing a fractal image that was convolved with
an out-of-focus PSF, extracted using SeDDaRA from a blurry image. Fractal
images are created using mathematical formulae, producing nature-like images
with perfect focus. The gray-scale fractal without and with blur is shown in
Figure 1. Using the same PSF, the pseudo-inverse filter was applied while
varying the C5 constant. The FWHM metric was then applied to the image
features, with the results shown in Figure 2. The plot shows improving image
quality with decreasing Cy while leveling off at Cy = 0.05. The slight decrease
appears to be the result of the amplification of noise introduced by using the
real PSF. Application of the metric to the non-blurred produced I, 4t;, = 0.490.

4  Application

Two image stacks were acquired from the National Institute of Health website
for the ImageJ program. [26] We chose to use public-domain image stacks to
allow direct comparisons with other blind deconvolution techniques. To the best
of our knowledge, no direct comparisons between methods has been published
for confocal microscopy. With this approach, other researchers will be able to
make direct comparisons with this work.

The images were processed by applying blind deconvolution in two ways, first
to the collapsed image, and second to individual frames. The resulting image
stack from the latter was collapsed to provide a direct comparison between the
two approaches.

4.1 Image Stack Alpha

The first set, called confocal stack and designated here as stack alpha, consisted
of 36 layers, with each focal depth layer having an 8-bit red image and an 8-bit
green image. The image blur is not very apparent, as shown in the collapsed
view (average of all frames) in Figure 3 (top).

The stack was processed by application of SeDDaRA and the constant-
frequency approximation on both single frames and the collapsed image. For
the SeDDaRA processing, a 512 by 512 fractal image, shown in Figure 4, was
chosen as the reference image and the Cs scaling factor was set to 0.006. For
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Figure 1: (Top) A fractal image used in the test case for the applying the
IFWHM metric. (Bottom) The fractal image was convolved with a real out-of-
focus PSF to create a simulated blurred image. Repeated deconvolution of the
blurred image, while varying the Cy scaling factor, produce a set of images with
a range of blur.
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Figure 2: The averaged FWHM values and the I,.4+;, metric plotted as a function
of the logarithm of the C3 scaling factor in the pseudo-inverse filter. Lower
values of the scaling factor produce less blur, which decrease the FWHM value
of image features. The improvement plateaus as the Cy scaling factor reaches
0.05.

the constant-frequency approximation, a was set to 0.4 and C5 scaling factor
was set to 0.01. The result of a single frame is shown in Figure 5.

The FWHM metric was applied to both the red and green frames, with the
results shown in Table 1. The metric was applied to a single frame and to the
average of all frames. Significant improvements were achieved on all components
of the image stack. The approximation (‘Dc’) showed better values of I,.,4;, than
the full SeDDaRA theory (‘Dx’). This suggests a better reference can be found
if the analyst believes more improvement is likely. However, visual inspection
of the results suggests that the difference is minimal and the approximation can
be used.

The collapsed frame of deconvolved images is shown in Figure 3(bottom).
Using the same contrast settings as Figure 3(top), the filaments in the red
segment of the processed image are visibly thinner and better defined, while the
green points are brighter and sharper.

4.2 Image Stack Beta

A second set, called class series on the NIH web site, consisted of 25 layers,
also consisting of 8-bit red and green layers, and has significantly more image
blur. The averaged view and processed result are shown in Figure 6. No further
information about either the collection process or the objects is provided.
Profile plots were created across sixteen image features to apply the image
metric. For a FWHM average of 12.52 pixels, the processing of the red frames
produced an improvement of 0.521 for the constant frequency approximation
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Figure 3: (Top) The averaged image from 36 frames from confocal stack alpha
before processing. (Bottom) The averaged image of 36 deconvolved frames from
the confocal stack using the constant-frequency approach. Image contrast has
been improved and increased resolution is apparent.
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Figure 4: This fractal image was chosen as the reference image for processing
the confocal stack using SeDDaRA.

FWHM Orig. | FWHM Dc | FWHM Dx | Lutio D¢ | Lratio DX
Red Single 3.39 2.63 2.76 0.223 0.188
Red Ave. 4.34 3.29 3.49 0.242 0.196
Green Single 3.62 2.93 2.78 0.234 0.190
Green Ave. 5.32 4.08 4.51 0.233 0.151

Table 1: Image Metric results for confocal stack alpha. The first three columns
are the average of the FWHM of sixteen image features in pixels.
two columns show the improvement ratio when images are processed using the
constant-frequency approximation (‘D¢’) and the full SeDDaRA theory (‘Dx’).

The last
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Figure 5: The top image is frame 20 of the NIH confocal image stack. The
constant-frequency approximation of SeDDaRA was applied with @ = 0.4 to
remove the blur from the image.
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Figure 6: (Top) The collapsed image of 25 frames from a confocal stack. (Bot-
tom) The collapsed image of 25 deconvolved frames from a confocal stack pro-
cessed using SeDDaRA.
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and 0.570 for SeDDaRA. Due to the lack of small features in the green frames,
the metrics could not be applied.

5 Conclusions

This paper described the application of the SeDDaRA blind deconvolution
method and the constant-frequency approximation to image stacks created by
confocal microscopic imaging. Being non-iterative, this technique is consid-
erably more computationally efficient than commonly-used iterative methods.
Visual inspection of the processed images reveal significant improvements in im-
age resolution. To quantify the effectiveness, a resolution improvement metric,
based on the full-width half maximum value of image features, was described and
applied to the results of the processing. In the two cases, considerable improve-
ments were produced in the resolution of both single frames and the combined
averaged image. The metric also showed that constant-frequency approximation
of SeDDaRA works as well as applying the full theory. This is important since
it allows the analyst to forego finding a suitable reference image for application
of SeDDaRA.

6 Author’s Comments

This paper was not accepted for publication, but has been through the peer-
review process. Revisions have been made in response to address the reviewer’s
comments. However, the reviewer requested that we provide additional knowl-
edge of the image sets which was not available. As we are unable to produce
our own set of confocal microscopic image stacks, we decided to offer the paper
as a technical note. We do welcome future collaborations that will fulfill this
request and produce a more complete paper.
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